Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.

Identifieur interne : 000991 ( Main/Exploration ); précédent : 000990; suivant : 000992

Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.

Auteurs : Annika S. Nelson [États-Unis] ; Cole T. Symanski [États-Unis] ; Matthew J. Hecking [États-Unis] ; Kailen A. Mooney [États-Unis]

Source :

RBID : pubmed:31135959

Descripteurs français

English descriptors

Abstract

The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi-trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects. We studied an ant-tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top-down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity. We documented patterns of aphid abundance and tested for both the direct and multi-trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high- and low-elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations. Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites. In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic-level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi-trophic perspective.

DOI: 10.1111/1365-2656.13034
PubMed: 31135959


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.</title>
<author>
<name sortKey="Nelson, Annika S" sort="Nelson, Annika S" uniqKey="Nelson A" first="Annika S" last="Nelson">Annika S. Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Symanski, Cole T" sort="Symanski, Cole T" uniqKey="Symanski C" first="Cole T" last="Symanski">Cole T. Symanski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of California at Riverside, Riverside, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Entomology, University of California at Riverside, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hecking, Matthew J" sort="Hecking, Matthew J" uniqKey="Hecking M" first="Matthew J" last="Hecking">Matthew J. Hecking</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>School of Natural Sciences, Hampshire College, Amherst, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>School of Natural Sciences, Hampshire College, Amherst</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mooney, Kailen A" sort="Mooney, Kailen A" uniqKey="Mooney K" first="Kailen A" last="Mooney">Kailen A. Mooney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31135959</idno>
<idno type="pmid">31135959</idno>
<idno type="doi">10.1111/1365-2656.13034</idno>
<idno type="wicri:Area/Main/Corpus">000877</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000877</idno>
<idno type="wicri:Area/Main/Curation">000877</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000877</idno>
<idno type="wicri:Area/Main/Exploration">000877</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.</title>
<author>
<name sortKey="Nelson, Annika S" sort="Nelson, Annika S" uniqKey="Nelson A" first="Annika S" last="Nelson">Annika S. Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Symanski, Cole T" sort="Symanski, Cole T" uniqKey="Symanski C" first="Cole T" last="Symanski">Cole T. Symanski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of California at Riverside, Riverside, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Entomology, University of California at Riverside, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hecking, Matthew J" sort="Hecking, Matthew J" uniqKey="Hecking M" first="Matthew J" last="Hecking">Matthew J. Hecking</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>School of Natural Sciences, Hampshire College, Amherst, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>School of Natural Sciences, Hampshire College, Amherst</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mooney, Kailen A" sort="Mooney, Kailen A" uniqKey="Mooney K" first="Kailen A" last="Mooney">Kailen A. Mooney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Rocky Mountain Biological Laboratory, Crested Butte</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of animal ecology</title>
<idno type="eISSN">1365-2656</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Ants (MeSH)</term>
<term>Aphids (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Plants (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Aphides (MeSH)</term>
<term>Fourmis (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Plantes (MeSH)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Ants</term>
<term>Aphids</term>
<term>Herbivory</term>
<term>Plants</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Aphides</term>
<term>Fourmis</term>
<term>Herbivorie</term>
<term>Plantes</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi-trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects. We studied an ant-tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top-down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity. We documented patterns of aphid abundance and tested for both the direct and multi-trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high- and low-elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations. Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites. In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic-level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi-trophic perspective.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31135959</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2656</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of animal ecology</Title>
<ISOAbbreviation>J Anim Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.</ArticleTitle>
<Pagination>
<MedlinePgn>1406-1416</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1365-2656.13034</ELocationID>
<Abstract>
<AbstractText>The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi-trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects. We studied an ant-tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top-down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity. We documented patterns of aphid abundance and tested for both the direct and multi-trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high- and low-elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations. Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites. In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic-level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi-trophic perspective.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Annika S</ForeName>
<Initials>AS</Initials>
<Identifier Source="ORCID">0000-0002-1086-0077</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Symanski</LastName>
<ForeName>Cole T</ForeName>
<Initials>CT</Initials>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of California at Riverside, Riverside, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hecking</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Natural Sciences, Hampshire College, Amherst, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mooney</LastName>
<ForeName>Kailen A</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, Crested Butte, Colorado.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Anim Ecol</MedlineTA>
<NlmUniqueID>0376574</NlmUniqueID>
<ISSNLinking>0021-8790</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001000" MajorTopicYN="Y">Ants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001042" MajorTopicYN="Y">Aphids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus tremuloides </Keyword>
<Keyword MajorTopicYN="Y">ant-aphid mutualism</Keyword>
<Keyword MajorTopicYN="Y">climate change</Keyword>
<Keyword MajorTopicYN="Y">elevation</Keyword>
<Keyword MajorTopicYN="Y">indirect effects</Keyword>
<Keyword MajorTopicYN="Y">multi-trophic interactions</Keyword>
<Keyword MajorTopicYN="Y">plant-herbivore interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31135959</ArticleId>
<ArticleId IdType="doi">10.1111/1365-2656.13034</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abdala-Roberts, L., Agrawal, A. A., & Mooney, K. A. (2012). Ant-aphid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. Oikos, 121(11), 1905-1913.</Citation>
</Reference>
<Reference>
<Citation>Abdala-Roberts, L., & Mooney, K. A. (2013). Environmental and plant genetic effects on tri-trophic interactions. Oikos, 122(8), 1157-1166. https://doi.org/10.1111/j.1600-0706.2012.00159.x</Citation>
</Reference>
<Reference>
<Citation>Barton, B. T., Beckerman, A. P., & Schmitz, O. J. (2009). Climate warming strengthens indirect interactions in an old-field food web. Ecology, 90(9), 2346-2351. https://doi.org/10.1890/08-2254.1</Citation>
</Reference>
<Reference>
<Citation>Barton, B. T., & Ives, A. R. (2014). Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology, 95(6), 1479-1484. https://doi.org/10.1890/13-1977.1</Citation>
</Reference>
<Reference>
<Citation>Benaglia, T., Chauveau, D., Hunter, D. R., & Young, D. S. (2009). Mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6), 1-29.</Citation>
</Reference>
<Reference>
<Citation>Blackman, R. L., & Eastop, V. F. (2018). Aphids on the world's plants. Retrieved from http://www.aphidsonworldsplants.info/</Citation>
</Reference>
<Reference>
<Citation>Bretfeld, M., Franklin, S. B., & Peet, R. K. (2016). A multiple-scale assessment of long-term aspen persistence and elevational range shifts in the Colorado Front Range. Ecological Monographs, 86(2), 244-260. https://doi.org/10.1890/15-1195.1</Citation>
</Reference>
<Reference>
<Citation>Chamberlain, S. A., Bronstein, J. L., & Rudgers, J. A. (2014). How context dependent are species interactions? Ecology Letters, 17(7), 881-890. https://doi.org/10.1111/ele.12279</Citation>
</Reference>
<Reference>
<Citation>Chamberlain, S. A., & Holland, J. N. (2009). Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology, 90(9), 2384-2392. https://doi.org/10.1890/08-1490.1</Citation>
</Reference>
<Reference>
<Citation>Coley, P. D., & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27(1), 305-335. https://doi.org/10.1146/annurev.ecolsys.27.1.305</Citation>
</Reference>
<Reference>
<Citation>R Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/</Citation>
</Reference>
<Reference>
<Citation>Dixon, A. F. G. (1985). Structure of aphid populations. Annual Review of Entomology, 30(1), 155-174. https://doi.org/10.1146/annurev.en.30.010185.001103</Citation>
</Reference>
<Reference>
<Citation>Dixon, A. F. G., Kindlmann, P., Leps, J., & Holman, J. (1987). Why there are So few species of aphids, especially in the tropics. The American Naturalist, 129(4), 580-592. https://doi.org/10.1086/284659</Citation>
</Reference>
<Reference>
<Citation>Donaldson, J. R., Kruger, E. L., & Lindroth, R. L. (2006). Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides). New Phytologist, 169(3), 561-570.</Citation>
</Reference>
<Reference>
<Citation>Fitzpatrick, G., Lanan, M. C., & Bronstein, J. L. (2014). Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism. Oecologia, 176(1), 129-138. https://doi.org/10.1007/s00442-014-3005-8</Citation>
</Reference>
<Reference>
<Citation>Frizzi, F., Rispoli, A., Chelazzi, G., & Santini, G. (2016). Effect of water and resource availability on ant feeding preferences: A field experiment on the Mediterranean ant Crematogaster scutellaris. Insectes Sociaux, 63(4), 565-574. https://doi.org/10.1007/s00040-016-0500-4</Citation>
</Reference>
<Reference>
<Citation>Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25(6), 325-331. https://doi.org/10.1016/j.tree.2010.03.002</Citation>
</Reference>
<Reference>
<Citation>Kaspari, M., & Weiser, M. D. (2000). Ant activity along moisture gradients in a neotropical forest. Biotropica, 32(4), 703-711.</Citation>
</Reference>
<Reference>
<Citation>Kishi, D., Murakami, M., Nakano, S., & Maekawa, K. (2005). Water temperature determines strength of top-down control in a stream food web. Freshwater Biology, 50(8), 1315-1322. https://doi.org/10.1111/j.1365-2427.2005.01404.x</Citation>
</Reference>
<Reference>
<Citation>Koptur, S. (1985). Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology, 66(5), 1639-1650. https://doi.org/10.2307/1938026</Citation>
</Reference>
<Reference>
<Citation>Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569-574. https://doi.org/10.1016/j.tree.2007.09.006</Citation>
</Reference>
<Reference>
<Citation>Lach, L., Parr, C., & Abbott, K. (Eds.) (2010). Ant ecology. New York, NY: Oxford University Press.</Citation>
</Reference>
<Reference>
<Citation>Lessard, J.-P., Dunn, R. R., Parker, C. R., & Sanders, N. J. (2007). Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park. Southeastern Naturalist, 6, 215-228. https://doi.org/10.1656/1528-7092(2007)6[215:RADIFA]2.0.CO;2</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R. L., & St. Clair, S. B. (2013). Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. Forest Ecology and Management, 299, 14-21. https://doi.org/10.1016/j.foreco.2012.11.018</Citation>
</Reference>
<Reference>
<Citation>Machac, A., Janda, M., Dunn, R. R., & Sanders, N. J. (2011). Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography, 34(3), 364-371. https://doi.org/10.1111/j.1600-0587.2010.06629.x</Citation>
</Reference>
<Reference>
<Citation>Marquis, M., Del Toro, I., & Pelini, S. L. (2014). Insect mutualisms buffer warming effects on multiple trophic levels. Ecology, 95(1), 9-13. https://doi.org/10.1890/13-0760.1</Citation>
</Reference>
<Reference>
<Citation>McCain, C. M. (2007). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16(1), 1-13. https://doi.org/10.1111/j.1466-8238.2006.00263.x</Citation>
</Reference>
<Reference>
<Citation>Menke, S. B., Harte, J., & Dunn, R. R. (2014). Changes in ant community composition caused by 20 years of experimental warming vs. 13 years of natural climate shift. Ecosphere, 5(1), 1-17.</Citation>
</Reference>
<Reference>
<Citation>Moles, A. T., Bonser, S. P., Poore, A. G. B., Wallis, I. R., & Foley, W. J. (2011). Assessing the evidence for latitudinal gradients in plant defence and herbivory. Functional Ecology, 25(2), 380-388. https://doi.org/10.1111/j.1365-2435.2010.01814.x</Citation>
</Reference>
<Reference>
<Citation>Moles, A. T., & Ollerton, J. (2016). Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? Biotropica, 48(2), 141-145. https://doi.org/10.1111/btp.12281</Citation>
</Reference>
<Reference>
<Citation>Mooney, E. H., Phillips, J. S., Tillberg, C. V., Sandrow, C., Nelson, A. S., & Mooney, K. A. (2016). Abiotic mediation of a mutualism drives herbivore abundance. Ecology Letters, 19(1), 37-44. https://doi.org/10.1111/ele.12540</Citation>
</Reference>
<Reference>
<Citation>Moreira, X., Petry, W. K., Mooney, K. A., Rasmann, S., & Abdala-Roberts, L. (2018). Elevational gradients in plant defences and insect herbivory: Recent advances in the field and prospects for future research. Ecography, 41(9), 1485-1496. https://doi.org/10.1111/ecog.03184</Citation>
</Reference>
<Reference>
<Citation>Müller, C. B., Williams, I. S., & Hardie, J. (2001). The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecological Entomology, 26(3), 330-340. https://doi.org/10.1046/j.1365-2311.2001.00321.x</Citation>
</Reference>
<Reference>
<Citation>Nelson, A. S., Pratt, R. T., Pratt, J. D., Smith, R. A., Symanski, C. T., Prenot, C., & Mooney, K. A. (2019). Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant-aphid mutualism strength. Oikos, 128, 540-550. https://doi.org/10.1111/oik.05650</Citation>
</Reference>
<Reference>
<Citation>Nelson, A. S., Symanski, C. T., Hecking, M. J., & Mooney, K. A. (2019). Data from: Elevational cline in herbivore abundance driven by a monotonic increase in trophic level sensitivity to aridity. Dryad Digital Repository, https://doi.org/10.5061/dryad.j6kn128</Citation>
</Reference>
<Reference>
<Citation>Oliver, T. H., Mashanova, A., Leather, S. R., Cook, J. M., & Jansen, V. A. A. (2007). Ant semiochemicals limit apterous aphid dispersal. Proceedings of the Royal Society of London B: Biological Sciences, 274(1629), 3127-3131.</Citation>
</Reference>
<Reference>
<Citation>Olmstead, K. L., & Wood, T. K. (1990). Altitudinal patterns in species richness of Neotropical treehoppers (Homoptera: Membracidae): The role of ants. Proceedings of the Entomological Society of Washington, 92(3), 552-560.</Citation>
</Reference>
<Reference>
<Citation>Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100</Citation>
</Reference>
<Reference>
<Citation>Pellissier, L., Litsios, G., Fiedler, K., Pottier, J., Dubuis, A., Pradervand, J.-N., … Guisan, A. (2012). Loss of interactions with ants under cold climate in a regional myrmecophilous butterfly fauna. Journal of Biogeography, 39(10), 1782-1790. https://doi.org/10.1111/j.1365-2699.2012.02743.x</Citation>
</Reference>
<Reference>
<Citation>Pellissier, L., Roger, A., Bilat, J., & Rasmann, S. (2014). High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: Is it just temperature? Ecography, 37(10), 950-959.</Citation>
</Reference>
<Reference>
<Citation>Pemberton, R. W. (1998). The occurrence and abundance of plants with extrafloral nectaries, the basis for antiherbivore defensive mutualisms, along a latitudinal gradient in East Asia. Journal of Biogeography, 25(4), 661-668. https://doi.org/10.1046/j.1365-2699.1998.2540661.x</Citation>
</Reference>
<Reference>
<Citation>Petchey, O. L., McPhearson, P. T., Casey, T. M., & Morin, P. J. (1999). Environmental warming alters food-web structure and ecosystem function. Nature, 402(6757), 69-72.</Citation>
</Reference>
<Reference>
<Citation>Petry, W. K., Perry, K. I., & Mooney, K. A. (2012). Influence of macronutrient imbalance on native ant foraging and interspecific interactions in the field. Ecological Entomology, 37(3), 175-183. https://doi.org/10.1111/j.1365-2311.2012.01349.x</Citation>
</Reference>
<Reference>
<Citation>Petry, W. K., Soule, J. D., Iler, A. M., Chicas-Mosier, A., Inouye, D. W., Miller, T. E. X., & Mooney, K. A. (2016). Sex-specific responses to climate change in plants alter population sex ratio and performance. Science, 353(6294), 69-71.</Citation>
</Reference>
<Reference>
<Citation>Plowman, N. S., Hood, A. S. C., Moses, J., Redmond, C., Novotny, V., Klimes, P., & Fayle, T. M. (2017). Network reorganization and breakdown of an ant-plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences, 284(1850), 20162564. https://doi.org/10.1098/rspb.2016.2564</Citation>
</Reference>
<Reference>
<Citation>Pons, X., & Tatchell, G. M. (1995). Drought stress and cereal aphid performance. Annals of Applied Biology, 126(1), 19-31. https://doi.org/10.1111/j.1744-7348.1995.tb05000.x</Citation>
</Reference>
<Reference>
<Citation>Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., … Slade, E. M. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356(6339), 742-744.</Citation>
</Reference>
<Reference>
<Citation>Sagata, K., & Gibb, H. (2016). The effect of temperature increases on an ant-Hemiptera-plant interaction. PLoS ONE, 11(7), e0155131. https://doi.org/10.1371/journal.pone.0155131</Citation>
</Reference>
<Reference>
<Citation>Sam, K., Koane, B., & Novotny, V. (2015). Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography, 38(3), 293-300. https://doi.org/10.1111/ecog.00979</Citation>
</Reference>
<Reference>
<Citation>Sanders, N. J., Lessard, J.-P., Fitzpatrick, M. C., & Dunn, R. R. (2007). Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16(5), 640-649. https://doi.org/10.1111/j.1466-8238.2007.00316.x</Citation>
</Reference>
<Reference>
<Citation>Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? The Annual Review of Ecology, Evolution, and Systematics, 40(1), 245-269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430</Citation>
</Reference>
<Reference>
<Citation>St. Clair, S. B., Monson, S. D., Smith, E. A., Cahill, D. G., & Calder, W. J. (2009). Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen (Populus tremuloides). Tree Physiology, 29(10), 1259-1268. https://doi.org/10.1093/treephys/tpp058</Citation>
</Reference>
<Reference>
<Citation>Staab, M., Blüthgen, N., & Klein, A.-M. (2015). Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos, 124(7), 827-834. https://doi.org/10.1111/oik.01723</Citation>
</Reference>
<Reference>
<Citation>Stadler, B., & Dixon, A. F. G. (2005). Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution, and Systematics, 36(1), 345-372. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531</Citation>
</Reference>
<Reference>
<Citation>Straw, N. A., Timms, J. E. L., & Leather, S. R. (2009). Variation in the abundance of invertebrate predators of the green spruce aphid Elatobium abietinum (Walker) (Homoptera: Aphididae) along an altitudinal transect. Forest Ecology and Management, 258(1), 1-10. https://doi.org/10.1016/j.foreco.2009.03.032</Citation>
</Reference>
<Reference>
<Citation>Tegelaar, K., & Leimar, O. (2014). Alate production in an aphid in relation to ant tending and alarm pheromone. Ecological Entomology, 39(5), 664-666. https://doi.org/10.1111/een.12130</Citation>
</Reference>
<Reference>
<Citation>Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x</Citation>
</Reference>
<Reference>
<Citation>Vasseur, D. A., & McCann, K. S. (2005). A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. The American Naturalist, 166(2), 184-198. https://doi.org/10.1086/431285</Citation>
</Reference>
<Reference>
<Citation>Vidal, M. C., & Murphy, S. M. (2018). Bottom-up vs. top-down effects on terrestrial insect herbivores: A meta-analysis. Ecology Letters, 21(1), 138-150. https://doi.org/10.1111/ele.12874</Citation>
</Reference>
<Reference>
<Citation>Voigt, W., Perner, J., Davis, A. J., Eggers, T., Schumacher, J., Bährmann, R., … Sander, F. W. (2003). Trophic levels are differentially sensitive to climate. Ecology, 84(9), 2444-2453. https://doi.org/10.1890/02-0266</Citation>
</Reference>
<Reference>
<Citation>Walther, G.-R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1549), 2019-2024.</Citation>
</Reference>
<Reference>
<Citation>Wimp, G. M., & Whitham, T. G. (2001). Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology, 82(2), 440-452.</Citation>
</Reference>
<Reference>
<Citation>Zelikova, T. J., Dunn, R. R., & Sanders, N. J. (2008). Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecologica, 34(2), 155-162. https://doi.org/10.1016/j.actao.2008.05.002</Citation>
</Reference>
<Reference>
<Citation>Zhang, S., Zhang, Y., & Ma, K. (2015). Mutualism with aphids affects the trophic position, abundance of ants and herbivory along an elevational gradient. Ecosphere, 6(12), 1-11. https://doi.org/10.1890/ES15-00229.1</Citation>
</Reference>
<Reference>
<Citation>Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York, NY: Springer. https://doi.org/10.1007/978-0-387-87458-6_11</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Colorado</li>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Nelson, Annika S" sort="Nelson, Annika S" uniqKey="Nelson A" first="Annika S" last="Nelson">Annika S. Nelson</name>
</region>
<name sortKey="Hecking, Matthew J" sort="Hecking, Matthew J" uniqKey="Hecking M" first="Matthew J" last="Hecking">Matthew J. Hecking</name>
<name sortKey="Hecking, Matthew J" sort="Hecking, Matthew J" uniqKey="Hecking M" first="Matthew J" last="Hecking">Matthew J. Hecking</name>
<name sortKey="Mooney, Kailen A" sort="Mooney, Kailen A" uniqKey="Mooney K" first="Kailen A" last="Mooney">Kailen A. Mooney</name>
<name sortKey="Mooney, Kailen A" sort="Mooney, Kailen A" uniqKey="Mooney K" first="Kailen A" last="Mooney">Kailen A. Mooney</name>
<name sortKey="Nelson, Annika S" sort="Nelson, Annika S" uniqKey="Nelson A" first="Annika S" last="Nelson">Annika S. Nelson</name>
<name sortKey="Symanski, Cole T" sort="Symanski, Cole T" uniqKey="Symanski C" first="Cole T" last="Symanski">Cole T. Symanski</name>
<name sortKey="Symanski, Cole T" sort="Symanski, Cole T" uniqKey="Symanski C" first="Cole T" last="Symanski">Cole T. Symanski</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000991 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000991 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31135959
   |texte=   Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31135959" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020